
Status of the InChl development

Gerd Blanke Technical Director of the InChl Trust Djordje Baljozovic, Felix Bänsch, Nauman Ullah Khan, Jan Brammer, Frank Lange 24-July-2024

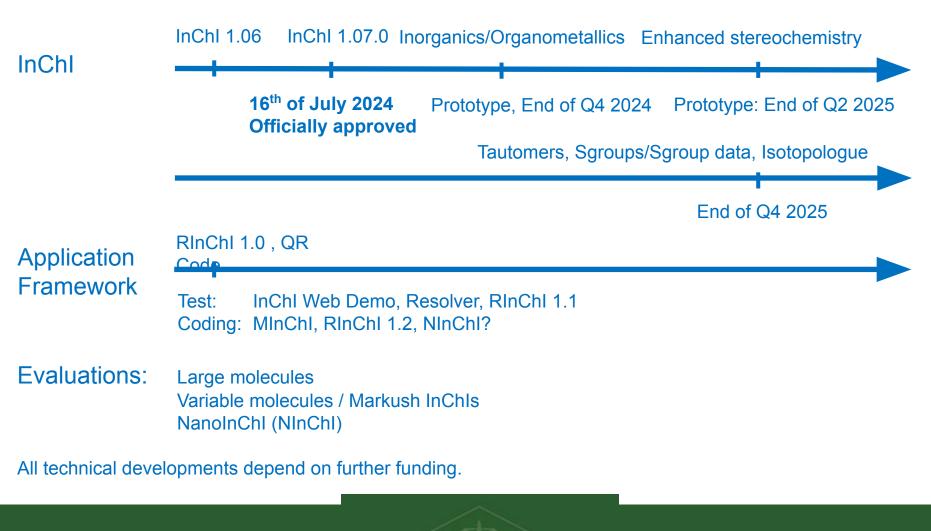
www.inchi-trust.org

The <u>International Chemical</u> <u>Identifier - the InChl Ecosystem</u>

Agenda

- Status overview
 - InChI release status
 - Programming next steps
 - Versioning
 - InChI working groups
 - RInChl
 - Organometallics
 - Stereochemistry

InChITRUST


<u>InChl</u>

- Released 1.07.0 out!
 - Code clean-up (about 3000 issues)
 - Polymers (in beta status)
 - 6 Tautomer transformations (for testing)
- Under development
 - Requirements (nearly) ready
 - Molecular inorganics
 - Stereochemistry
 - Tautomers
 - Sgroups and Sgroup data
 - Isotopologues
- Longer evaluations
 - Variable molecules / Markush InChls
 - Prototypes being tested
 - <u>https://github.com/topics/inchi</u>
 - Large molecules

InChl Application Framework

- Released
 - RInChl 1.0
- Published
 - QR code
- Test phase
 - InChI Web Demo
 - https://iupac-inchi.github.io/InChI-Web-Demo/
 - Resolver
 - <u>https://github.com/inchiresolver/inchiresolver#readme</u>
 - RInChI (1.1)
 <u>https://github.com/IUPAC-InChI/RInChI</u>
- Awaiting coding
 - MInChl
 - Prototype released
 - https://github.com/cdd/mixtures
 - RInChI (1.2)
- Evaluations
 - NanolnChl (NInChl)

InChl Roadmap

- 1.07.0 released and accepted 16-July-2024
 - https://github.com/IUPAC-InChI/InChI
 - Availability of 6 tautomer transformation in test mode
 - Fix of a bug in InChI to structure for Buten-2
 - Fix of a buggy error message for no-structures
 - More than 3,000 issues fixed

- 1.07.0 released and accepted 16-July-2024
 - Google fuzz
 - Main reported issues
 - Buffer overflows
 - Memory leaks
 - Segmentation faults
 - Special local test environment in place
 - Easier and faster testing
 - Total reported number of bugs has come down
 - Further fixes in minor release versions 1.07.x
 - 1.07.1 will provide a bug fix for an issue reported by Burt Leland

InChITRUST

- 1.07.0 released and accepted 16-July-2024
 License harmonization
 - 1.07 runs under MIT license
 - License mismatch in older versions of GitHub repository
 - Issue during the GitHub set-up: The older versions under the GitHub release folder got the new MIT license.pdf. For adjustment the release folder must be re-built.

- Compiler versions
 - Versions 7 to 14 of GCC compilers have been used to check compatibility with older versions and the consistency of eventual warning messages.
 - 5 structures (of 300 million PubChem substances) fail but only with GCC 12, 13 and 14
 - Solved by modified setting of optimization parameters
 - Microsoft compilers
 - Open issue: MAC version
 - Up to now not supported in main InChI release code

- Testing
 - Test base

	Compound	Compound 3D	Substance					
download ^a	Oct 13 2023	Oct 25 2023	Oct 23 2023					
size in GB (gzip) ^b	99	37	81					
N SDF ^c	338	1,103	895					
N structures ^d	114,726,411	23,487,296	306,711,305					

https://ftp.ncbi.nlm.nih.gov/pubchem/

 All results pertain to InChI 1.7.0 compiled with GCC 14.1.0 on Debian bookworm. All test ran on 16 physical cores.

InChITRUST

- Regression tests
 - Comparison of the results of 1.07.x against 1.06

Regression Results

	Compound	Compound 3D	Substance					
N structures ^e	114,726,411	23,487,296	306,711,305					
N structures passed ^f	114,726,411	23,487,296	306,711,303					
N structures failed ^g	0	0	2					
percentage failed ^h	0	0	0.0000064					
run-time total ⁱ	402 min (6 hrs, 42 min)	106 min (1 hr, 46 min)	585 min (9 hrs, 45 min)					
avg run-time per structure ^j	0.21 ms	0.27 ms	0.114 ms					

Standard tests for 1.07.x versions

Run for each release

- Invariance tests
 - Renumbering of tested molfile
 - Each molfile is renumbered 10 times

Invariance Results

1	Compound	Compound 3D	Substance						
N structures ^k	114,726,411	23,487,296	306,711,305						
N structures missing	0	0	16,932,378						
N structures error ^m	n/a	0	21						
N structures passed ⁿ	n/a	23,487,290	289,776,775						
N structures failed ^o	n/a	6	2,131						
percentage failed ^p	n/a	0.000026	0.000735						
run-time total ^q	n/a	389 min (6 hrs, 29 min)	4,063 min (2 days, 18 hrs, 43 min)						
avg run-time per structure ^r	n/a	0.98 ms	0.84 ms						

- Invariance tests
 - RDKit tool used instead of InChI function (easier to implement, used in other projects as well)
 - Development of unit tests continuing
 - GitHub powerful enough to run major parts of PubChem tests
 - Additional tests of InChI parameters continued
 - Because of time consumption invariance tests are only run for major releases

- Docker stations
 - Can be downloaded to test InChIs within own firewalls
 - Keep privateness of own data
 - Located in the test section

- Documentation
 - Rebuilt of documentation
 - Documentation of chemical representation into its own document (Chemical documentation)
 - Currently found in TechMan, User Guide, and FAQ
 - Additional technical InChI information about the code workflow and programming details to be added to the Technical document
 - Expected for version > 1.07.0

InChl Web Demo

Access to 1.06 and 1.07.0 (now default!)

- Interactive tests of actual development version

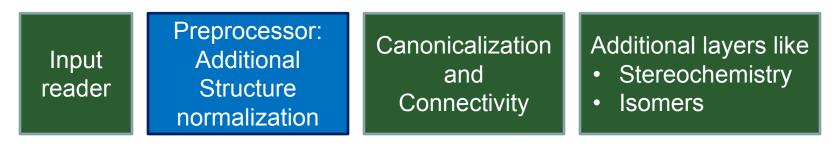
InChITRUST InChI We	eb Demo
Inchi Rinchi Funding Draw structure and convert to InChi Convert Molfile to InChi Draw structure and convert to InChi Draw structure and convert to InChi Convert Molfile	Convert InChl or AuxInfo to structure C M C N C N C Relative Relative Relative Recemic From chiral flag Always include omitted/undefined stereo Different marks for unknown/undefined stereo Different marks for unknown/undefined stereo Both ends of wedge point to stereocenters Include Bonds to Metal Tautomer options ~ Treat polymers: No pre-edits of original polymer structure Enable CRU folding Disable CRU folding Disable CRU folding Disable CRU folding Callow non-polymer Zz pseudoatoms Rest InChl Options
	Select InChiversion
InChI InChI=15/C2H60/c1-2-3/h3H,2H2,1H3	
InChIKey	
LFQSCWFLJHTTHZ-UHFFFA0YSA-N	
AuxInfo	
AuxInfo=1/0/N:1,2,3/rA:3nCCO/rB:s1;s2;/rC:2.842,-4.25,0;3.708	i,-3.75,0;4.574,-4.25,0;
Log	
InChI options:	

InChl Web Demo

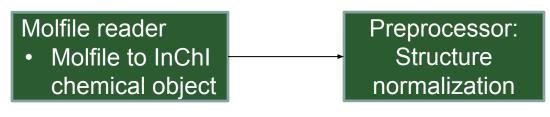
- Work on additional functionality
 - Display of InChI numbering in molecule
 - Display of tautomeric hydrogen zones within the molecule

WInChl

- Windows based InChI calculator
 - Maintenance and further development will be done by the original author Dmitrii Tchekhovskoi
 - Will be added to GitHub in it sown repository



Programming – next steps



Programming – next steps

New Architecture

 InChI internal reader: molfile to internal chemical object

QA of the input reading process

- Check of the V2 and V3 reader
 - Check of the types of values that are transferred from the molfile to the internal chemical object
 - V2 molfile reader is the most comprehensive one
 - Only expected properties fail like structures with query atoms or bonds (except aromatic bonds)
 - V3 molfiles show issues with some of the Sgroup types
 - Some of the polymer brackets are not supported

InChITRUST

– 3D molfile are under investigation

Programming – next steps

- Structure normalization functionality
 - Break bonds
 - Create bonds
 - Exchange bonds
 - Bonds to represent inorganics and organometal-lics are replaced by single bonds with adapted valences at the atoms
 - Coordinative bonds
 - Dative bonds
 - Haptic bonds

InChl versioning

- Discussion about InChI versioning
 - We must change to 2.x if the format is going to change
 - Modification of the InChI keys
 - Longer second section to reflect stereochemistry issues
 - Major changes in the canonicalization and connectivity string creation
 - Restricted backward compatibility
 - Current view: Keep 1.x as long as possible

InChl versioning

- Discussion about InChI versioning
 - Recognition of version 1.1 or higher
 - InChIKeys only represented by "SA"
 - "A" only points to any 1 version
 - Transfer from 1.0x to any 1.1 or higher version
 - What will be needed from the technical side will be determined during the implementation of organometallics and enhanced stereochemistry

InChl working groups

Reaction InChI (RInChI)

RInChl

- RInChl 1.1 is prepared for release
 - Based on InChl 1.07.0
 - Additional functionality
 - Support of extended RXN format
 - Agents in third layer of RXN format
 - Fix of known technical issues
 - RInChI Mac version contributed by István Öri, member of the RInChI group
 - https://github.com/IUPAC-InChI/RInChI
 - RInChI became prototype for the InChI development on GitHub

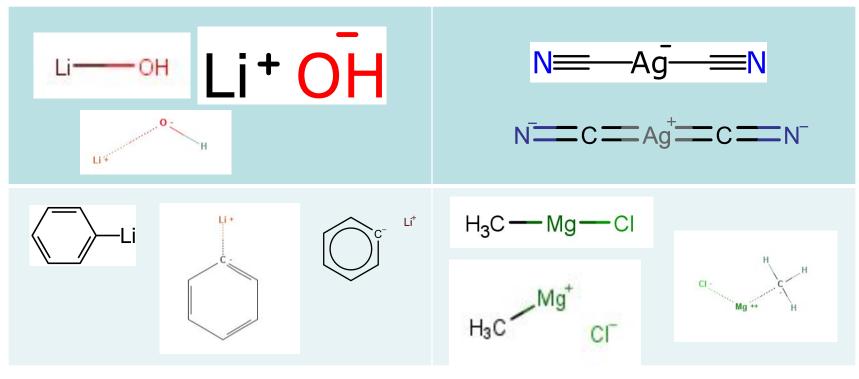
InChITRUST

RInChl

- RInChI 1.1 is prepared for release
 - Tests
 - USPTO reaction set 2008 to 2011
 - About 400,000 reactions
 - Discrepancies seen are based on differences between InChI
 1.04 (used in RInChI 1.0) and InChI 1.07
 - InChI Web Demo can be used for RInChI tests
 - Developing a new RInChI tutorial (Günter Grethe)
 - To be integrated with the InChI Web Tool (if possible)
 - Development of simple search engine for (R)InChI

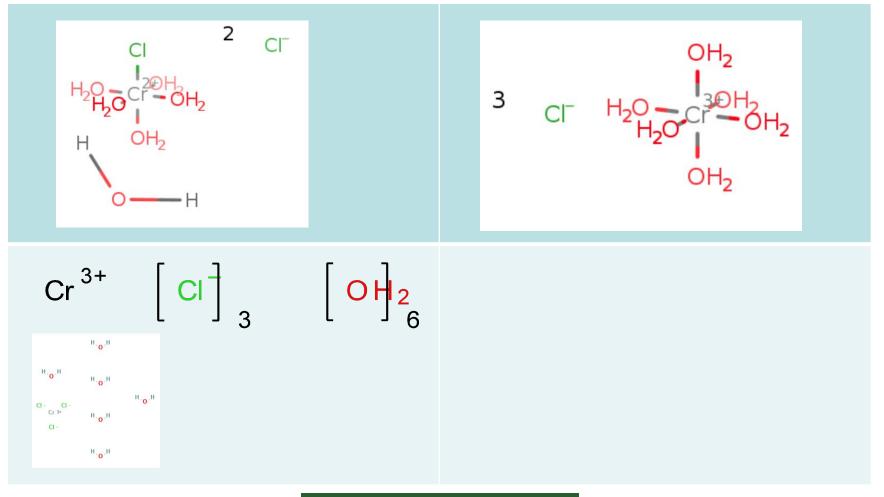
RInChl

- Enhancements planned for RInChI 1.2
 - Atom mapping
 - Multithreading

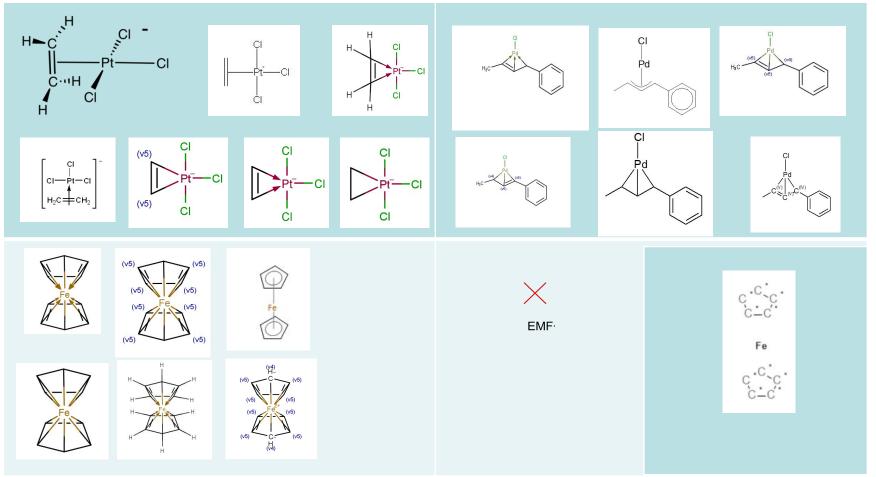


InChl working groups

Inorganics / Organometallics



 Working group set up the general implementation guidelines


InChITRU

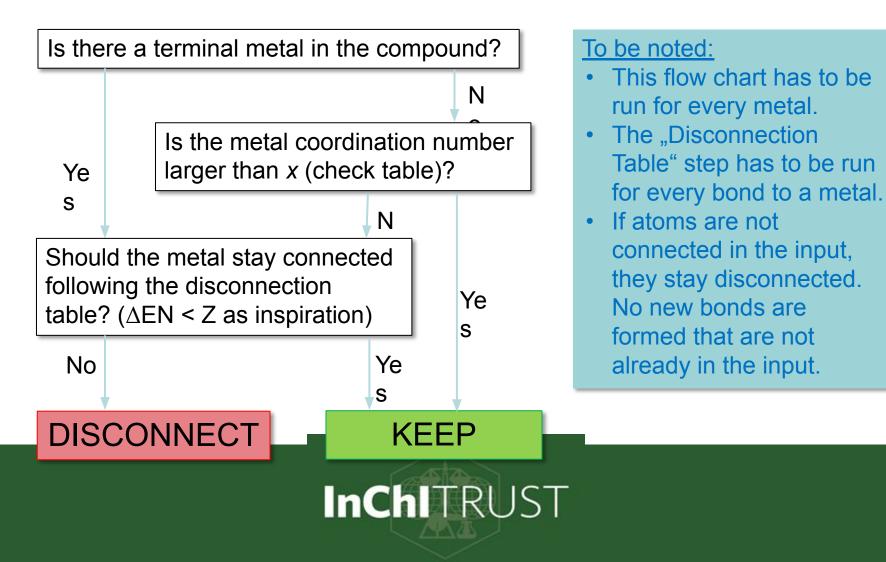
www.inchi-trust.org

www.inchi-trust.org

- Keep connectivity for inorganics and organometallics
 - Keep explicitly drawn Hydrogens
 - Hydrogen atoms must be drawn explicitly
 - Exception: H atoms bound to atoms of organic elements like C, N, O where the H count is determined by the atom valence and the actual bond order of the atom
 - Exception of connectivity: see simple flow chart

run for every metal.

Table" step has to be run

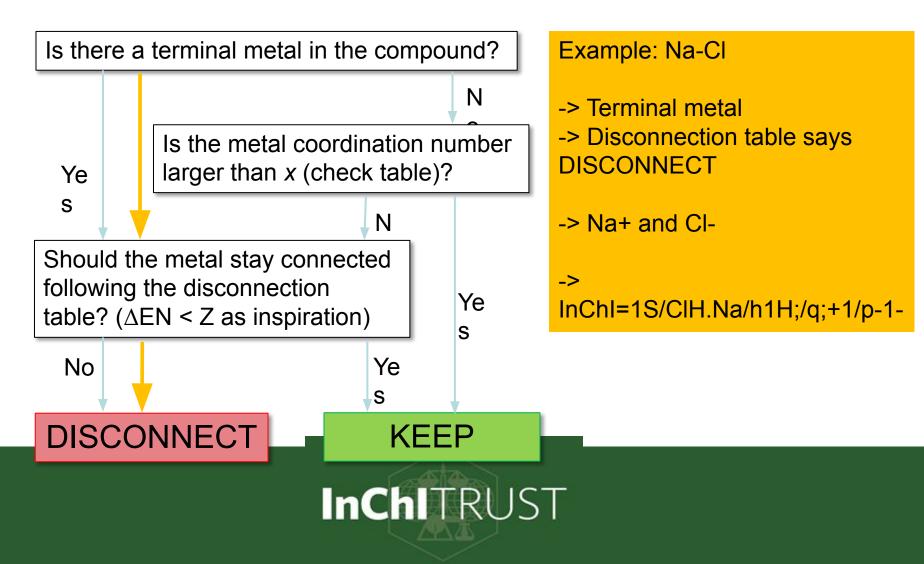

connected in the input,

they stay disconnected.

already in the input.

Inorganics and organometallics

Disconnection flow chart



Disconnection table

ektronegativitätsdifferenzen	ιH	² H/D	³ H / T	₂ He	3Li	⊿Be	5B	5C	7N	₈ O	۶F	10Ne	11Na	12Mg	13AI	14Si	15P	16S	17CI	18Ar	19K	20Ca	21SC	22 Ti	23V	24C
utscher Name nach IUPAC	asserstoff			Helium	Lithium	Beryllium	Bor	Kohlenstof	Stickstoff	Sauerstoff	Fluor	Neon	Natrium	Magnesium	Aluminium	Silicium	Phosphor	Schwefel	Chlor	Argon	Kalium	Calcium	Scandium	Titan	Vanadium	Chro
rundete mittlere Atommasse	101u			4.00 u	6.94 u	9.01u	10.81 u	12.01 u	14.01 u	16.00 u	19.00 u	20.18 u	22.99 u	24.31u	26.98 u	28.09 u	30.97 u	32.07 u	35.45 u	39.95 u	39.10 u	40.08 u	44.96 u	47.87 u	50.94 u	52.00
ktronegativität nach Pauling	2,20				0,98	1,57	2,04	2,55	3,04	3,44	3,98	-	0,93	1,31	1,61	1,90	2,19	2,58	3,16		0,82	1,00	1,36	1,54	1,63	1,66
oncodius	79 pm			49 pm	205 pm	140 pm	117 pm	91pm	75 pm	65 pm	57 pm	51pm	223 pm	172 pm	182 pm	146 pm	123 pm	109 pm	97 pm	88 pm	277 pm	223 pm	209 pm	200 pm	192 pm	185 p
valenzradius sgewählte Oxidationszahlen (wichtigste fett)	32 pm			93 pm	123 pm	90 pm 2	82 pm 3	77 pm	75 pm	73 pm	72 pm -1	71pm	154 pm	136 pm	118 pm 3	111pm	106 pm	102 pm	99 pm	98 pm	203 pm	174 pm	144 pm 3	132 pm	122 pm	118 p
sgewante Oxidation/2amen (Wentigste rett) ktronenkonfiguration in Grundzustand	1:1			- 1s ²	1s22s1	1s ² 2s ²	3 1s ² 2s ² p ¹	-4,, 4 1s ² 2s ² p ²	-3,, 5 1s ² 2s ² p ³	-2, -1 1s ² 2s ² p ⁴	1s ² 2s ² p ⁵	1s22s2p4	1 [Nel3s ¹	2 [Nel3s ²	3 [Ne]3s ² p ¹	(Ne)3s ² p ²	±3, 5, 4 [Ne]3s ² p ³	±2, 4, 6 [Ne]3s ² p ⁴	±1, 3, 5, 7 [Ne]3s ² p ⁵	[Nel3s ² p ⁴	1 (Ar)4s ¹	[Ar]4s ²	3 [Ar]3d ¹ 4s ²	4,3 [Ar]3d ² 4s ²	5, 4, 3, 2 (Ar)3d ³ 4s ²	6, 3 (Ar)3d
inelatomperatur	14.025K			1K (26 atm)	453.7K	1'560 K	2'300 K	4'100 K	63.14 K	50.35 K	53.48K	24.553K	3710K	922 K	933.25 K	1685 K	317.30K	388.36 K	172.16K	83.81K	336.35 K	1112K	1'812 K	1943K	2'175 K	2'130
detemperatur	20.268 K			4.215 K	1'615 K	2'745 K	4'275 K	4'470 K	77.35 K	90.18 K	84.95 K	27.096 K	T156 K	T363 K	2793K	3'540 K	550 K	717.75K	239.1K	87.30 K	1032 K	1757 K	3'104 K	3'562 K	3'682 K	2'94
hte bei Roumtemperatur	0.0899 g/L			0.1787 g/L	0.53 g/cm ³	1.85 glom ³	2.34 glom ³	2.62 glom ³	1.251g/L	1.429 g/L	1.696 g/L	0.901g/L	0.97 g/om ³	1.74 g/cm ³	2.70 g/cm ³	2.33 g/cm ³	1.82 g/cm ³	2.07 g/cm ³	3.17 g/L	1.784 g/L	0.86 g/cm ³	1.55 g/om ³	3.0 g/om ³	4.50 glom ³	5.8 g/om ³	7.199
Elemente	H	D	T	He	Li	Be	B	C	N	0	F	Ne	Na	Mg	Al	Si	Р	5	a	Ar	K	Са	5c	Ti	V	6
Avle' mer	1	2	3	4	7	9	11	12	14	16	19	20	23	24	27	28	31	32	35	40	39	40	45	48	51	52
MHS mas 5 w S. eract Min'	1007825	2.014102	3 010040	4,0026	7 7.016	9 9.01218	11 11.0093	12 12	14	15 15.39491	19 18.9984	20 19.99244	23	24 23.985	27 26.98154	28 27,97693	31 30,97376	32	35 34,96385	40	39	40 39,9626	45 44.35531	48 47.94795	51 50.94396	52 51.94
2 Type scarmeta = 0 / metal(1	2.0 MARCE	3.016049	4.0000	METAL	METAL	11.0000	1	14.00307	10.30401	10.3304	12.33244	22.98977 METAL	METAL	METAL	21,51055	0.51510	31.97207 N	1	39.9624 D	38.9637 METAL	METAL	METAL	METAL	METAL	META
Ekktronogatinität EN*10 (nach Pauling)	21	21	21	0	10	15	20	25	30	35	40	0	3	12	15	18	21	25	30	0	8	10	13	15	15	15
House Hinchi does not add implicit H to	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,		,	
on a long that have non-curo																				1000						
Alter a	101 101	(0) 101	101 101	10) 101	10) 101	101 101	(3) 4]	121 131	111	101 111	101 101	101 301	101 301	101 101	13.57 141	(2) 13.51	(1.3.5.7) 12.4.61	10) 11.3.5.71	101 101	10) 101	101 101	101 101	101 101	101 101	10) 10)	10.
P g h Palences related a	111	111	111	101	111	127	131	147	13.57	121	111	101	111	121	131	141	13.57	12.4.61	11.3.5.71	101	10	121	131	13.41	12.3.4.57	12.3
to charges	101	101	101	101	101	111	121	131	141	13.51	121	101	101	111	121	131	141	13.51	12.4.5)	101	101	111	101	101	101	10
2	101	101	101	101	101	101	111	121	131	141	13.51	101	101	101	10	121	131	141	13.51	101	101	101	101	101	101	10
W solopment Standardvaences in salts	10	10	10	101	10	12)	131	141	12.51	121	111	101	10	121	,131	141	131	12)	10	101	10	121	131	12.41	12.3.4.51	12.3
6C Kohlenstoff 2,55	0,35				1,57	0,98	0,51	0.00	0,49	0,89	1,43		1,62	1,24	0,94	0,65	0,36	0,03	0,61		1,73	1,55	1,19	1,01	0,92	
7N Stickstoff 3,04	0,84				2,06	1,47	1,00	0,49	0,00	0,40	0,94		2,11	1,73	1,43	1,14	0,85	0,46	0,12		2,22	2,04	1,68	1,50	1,41	
80 Sauerstoff 3,44	1,24				2,46	1,87	1,40	0,89	0,40	0,00	0,54		2,51	2,13	1,83	1,54	1,25	0,86	0,28		2,62	2,44	2,08	1,90	1,81	
₉ F Fluor 3,98	1,78				3,00	2,41	1,94	1,43	0,94	0,54	0,00		3,05	2,67	2,37	2,08	1,79	1,40	0,82		3,16	2,98	2,62	2,44	2,35	
10Ne Neon -							~ ~ ~ ~																			
11Na Natrium 0,93	1,27				0,05	0,64	1,11	1,62	2,11	2,51	3,05		0,00	0,38	0,68	0,97	1,26	1,65	2,23		0,11	0,07	0,43	0,61	0,70	
12 <mark>Mg</mark> Magnesium 1,31	0,89				0,33	0,26	0,73	1,24	1,73	2,13	2,67		0,38	0,00	0,30	0,59	0,88	1,27	1,85		0,49	0,31	0,05	0,23	0,32	
13Al Aluminium 1,61	0,59				0,63	0,04	0,43	0,94	1,43	1,83	2,37		0,68	0,30	0,00	0,29	0,58	0,97	1,55		0,79	0,61	0,25	0,07	0,02	
14 <mark>Si Silicium</mark> 1,90	0,30				0,92	0,33	0,14	0,65	1,14	1,54	2,08		0,97	0,59	0,29	0,00	0,29	0,68	1,26		1,08	0,90	0,54	0,36	0,27	
15P Phosphor 2,19	0,01				1,21	0,62	0,15	0,36	0,85	1,25	1,79		1,26	0,88	0,58	0,29	0,00	0,39	0,97		1,37	1,19	0,83	0,65	0,56	
16S Schwefel 2,58	0,38				1,60	1,01	0,54	0,03	0,46	0,86	1,40		1,65	1,27	0,97	0,68	0,39	0.00	0,58		1,76	1,58	1,22	1,04	0,95	
17Cl Chlor 3,16	0,96				2,18	1,59	1,12	0,61	0,12	0,28	0,82		2,23	1,85	1,55	1,26	0,97	0,58	0,00		2,34	2,16	1,80	1,62		
18 <mark>Ar A</mark> rgon -													·····													
19K Kalium 0,82	1,38				0,16	0,75	1,22	1,73	2,22	2,62	3,16		0,11	0,49	0,79	1,08	1,37	1,76	2,34		0.00	0,18	0,54	0,72	0,81	
20 <mark>Ca Calcium</mark> 1,00	1,20				0,02	0,57	1,04	1,55	2,04	2,44	2,98		0,07	0,31	0,61	0,90	1,19	1,58	2,16		0,18	0.00	0,36	0,54		
21 <mark>SC Scandium</mark> 1,36	0,84				0,38	0,21	0,68	1,19	1,68	2,08	2,62		0,43	0,05	0,25	0,54	0,83	1,22	1,80		0,54	0,36	0,00	0,18		
22 <mark>TI Titan</mark> 1,54	0,66				0,56	0,03	0,50	1,01	1,50	1,90	2,44		0,61	0,23	0,07	0,36	0,65	1,04	1,62		0,72	0,54	0,18	0,00		

Disconnection flow chart

- Any bond is not allowed (like in organic InChI)
- Zero order bond / molfile bond type 9 /coordination bond
 - Is allowed
 - Represents connection only
 - Does not affect (alter) H-Count
 - Does not affect (alter) valence count (ligand count)?
 - In the context of InChI calculation it is converted to single bond via setting appropriate valence count on starting atom / ending atom

- Output format
 - New standard InChI format for inorganics and organometallics is based on the current reconnection layer

InChI=1S/C8H16Cu2010/c1-5-13-9(11)15-6(2)
16-10(12,14-5,18-7(3)17-9)20-8(4)19-9/h11
-12H2,1-4H3

For consistency add a new parameter
 disconnectMetal to let the InChI calculation add
 the current format as additional layer

InChITRUST

- InChI (and InChIKey) do not change for organic molecules!
- Currently working out further implementation details
 - Salt handling versus metal disconnection
 - Recognition of polyhedrons
 - Stereochemistry

InChl working groups

Stereochemistry

Stereochemistry

- Recognition and encoding of atropisomers
- Support of enhanced stereo designation
- Correct recognition of carbohydrates in Haworth and chair forms
- Recognition and encoding of configuration of long allenes

InChITRUST

 Recognition of configuration for special 'spiro centers'

Stereochemistry

- Specific designations of configurations valid and invalid representations
- Polyhedral configurations in collaborations with inorganic/organometallics group
- Any other useful proposals related to InChI stereo

Stereochemistry

- Preparation of recommendations on enhanced stereo designation in collaboration with Division VIII.
 - Not directly connected to InChI development, but it is important for making enhanced stereo recognized by IUPAC.

www.inchi-trust.org

Thanks

InChITRUST